

 Navigation

 	
 index

 	
 next |

 	Moa 0.10.15 documentation

Welcome to Moa!

Lightweight, command line, workflows for bioinformatics

Moa aims to assist a bioinformatician to organize, document, share,
execute and repeat workflows in a command line environment without
losing flexibility, and, at all times giving the user full access to
all aspects of the workflow (see also Goals).

NOTE: both the software and the manual are under development. Things might change.

Quick links

	Source code: https://github.com/mfiers/Moa

	Issue tracker: https://github.com/mfiers/Moa/issues (old issue tracker [http://moamoa.lighthouseapp.com/projects/73665-moa/overview])

	Python Package Index: http://pypi.python.org/pypi/moa/

Table of contents:

	Goals

	Introduction

	Installation

	Three core templates

	How to write a template

	Command reference

	Templates

	Moa API

More information

	Browse the Moa source [https://github.com/mfiers/Moa] at Github [https://github.com/mfiers/Moa].

	Download a pdf version of the manual.

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2010-2012 Mark Fiers.
 Last updated on Oct 14, 2012.
 Created using Sphinx 1.1.2.

 TEST Brought to you by Read the Docs

 	moa.0.11

 	latest

 	v0.10.15

 Goals

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moa 0.10.15 documentation

Goals

Moa aims to assist in achieving the following for a bioinformatics
project:

	Organized:

Moa facilitates project organization by allowing at only one
job per directory, and, by having all configuration, templates,
data, and intermediate data available as files in this directory
structure.

	Documented:

Moa provides the possibility to add a title, description and
changelogs to each job.

	Reproducible

By having all templates and configuration copied into a workflow -
the workflow does never change (unless the user wants it to), even
if templates in the repository change. Moreover, all templates are
easy to find & inspect so it is always clear what happened.

	Reusable & Shareable:

Moa provides reusable templates. New templates are easy to create,
adapt and share. Workflows can be archived and reused with
different data.

	Flexible:

Moa provides a good number of hooks to insert custom code into a
workflow, making that code part of the workflow. This ensures
maximum flexibility.

 Copyright 2010-2012 Mark Fiers.
 Last updated on Oct 14, 2012.
 Created using Sphinx 1.1.2.

 TEST Brought to you by Read the Docs

 	moa.0.11

 	latest

 	v0.10.15

 Introduction

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moa 0.10.15 documentation

Introduction

These days, generating massive amounts of data is an everyday element
of biological research; and almost all projects have a bioinformatics
components. Such embedded bioinformatics work commonly consists of
chaining a number of 3rd party tools together, often with
some data manipulation in between the steps. It is important to have
such projects properly organized, particularly when a projects grows
bigger.

There are many different ways to organize bioinformatics
projects. Many bioinformaticians use the command line or tailor made
scripts to organize and automate their work. This approach has obvious
advantages, most importantly flexibility. Potential downsides to
scripting are that a project easily becomes disorganized and
untraceable unless measures are taken.

Moa aims to assist in organizing, automating and maintaining a
command line bioinformatics project without loss of flexibility.

Example

The best way to understand how Moa can help you to achieve this is by
an example. A Moa workflow consists of separate Moa jobs. A workflow
is typically organised as a directory tree, where the structure of the
tree reflects the structure of the project. So, Starting a Moa project
starts with outlining a directory structure to contain the workflow:

$ mkdir test.project && cd test.project
$ mkdir 00.proteins

(copy or link some protein sequences into 00.proteins)

$ mkdir 10.blast
$ cd 10.blast

An important feature of Moa is that each separate analysis step is
contained within a separate directory. Two Moa jobs never share a
directory. This forces a Moa user to break a workflow down to atomic
parts, which is typically beneficial to the organization and coherence
of a workflow. The order of steps is easily ordered by prefixing
directory names with a number. Note that these prefixes are not
enforced by Moa; any alphabetical organization would work as
well. Once a directory is created, a Moa job can be created:

$ moa new blast -t "demo run"

All interaction with Moa is done through a single command: moa. It
is, at all times, possible to get help on the use of the moa command
by invoking moa –help. The command above creates a BLAST job
titled “demo run” in the current directory. All Moa related files are
stored in a (hidden) sub-directory names .moa (have a look!). A Moa
job consists, amongst others, of a configuration file and a number of
template files. All template files are copied into the .moa
directory. This ensures that a workflow remains the same over time,
even if the templates are updated (moa refresh would update a
template to the latest version).

Another topic in which Moa tries to help is by embedding (some)
documentation. In the above command line the -t parameter sets a
mandatory project title (a job won’t execute without a title).

Obviously, telling a Moa job to do a BLAST analysis is not enough,
some variables will need to be set:

$ moa set db=/data/blast/db/nr

A few things could be noted here. Important is that you do not use
spaces around the = sign. If you want to define a parameter with
spaces, use quotes (key=”value with spaces”), and be aware of bash
interpretation. A safe way of entering complex parameters is by
running moa set db and Moa will query you the value.

Another point is that Moa does not give you a response. You can check
the current job configuration using moa show, which would at this
moment result in something resembling:

db L /data/blast/db/nr
input E (undefined)
jobid L blast
title L demo run

Note the variable db and title, which were set earlier. If you run
show -a, more parameters will be revealed, amongst which is
program. We will now set two more variables:

$ moa set program=blastp
$ moa set input=../00.proteins/*.fasta

The last statement defines the input files to blast. Once all is set
you can actually run the BLAST analysis with:

$ moa run

Now Moa performs the BLAST analysis on the input files. The output can
be found in the out sub-directory. As an extra, the Moa blast
template generates a blast_report file with simple one line report
for the best five hits of each query sequence. If you, for example,
would like to check for the presence of dicer genes in your query set,
you could grep this file:

$ grep -i dicer blast_report

Command line operation of data files can be very powerful, and this
would be a typical operation for a command line bioinformatician. Moa
lets you capture this and thus make it a part of the pipeline. Try:

$ moa set postcommand

and, at the prompt enter:

postcommand:
> grep -i dicer blast_report > dicer.out

If you now rerun moa, the BLAST job will not be repeated, but the
postcommand will be executed and a dicer.out file will be
generated. (note, there is also a precommand)

 Copyright 2010-2012 Mark Fiers.
 Last updated on Oct 14, 2012.
 Created using Sphinx 1.1.2.

 TEST Brought to you by Read the Docs

 	moa.0.11

 	latest

 	v0.10.15

 Installation

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moa 0.10.15 documentation

Installation

Prerequisites

Moa is developed and tested on Ubuntu [http://www.ubuntu.com] and
RHEL [http://www.redhat.com] and is expected to operate without
much problems on all modern Linux distributions. Moa has the following
prerequisites (and a large number more for all templates). The version
numbers are an indication, not strict prerequisites. Other, even
older, versions might work.

	Gnu Make [http://www.gnu.org/software/make/] (3.81)

	Git [http://git-scm.com/] (1.6). Necessary either to download the
Moa software from github, or, to make use of the integrated version
control.

	
	Python [http://python.org] (2.6). Moa is not tested with other

	versions of Python

	
	Bash [http://www.gnu.org/software/bash/] (4.1.2). Many of the

	embedded scripts expect the Bash shell.

	
	Gnu Make Standard Library [http://sourceforge.net/gsml] (GSML). A

	set of standard routines for Gnu Make. GSML is distributed together
with Moa.

	A number of support scripts & templates depend on Biopython [http://biopython.org/wiki/Main_Page]. Consider installing it
before starting to use Moa.

	Python-dev: the Python development package. A few prerequisites
installed by easy_install try to compile C libraries, and need
this. Although all of them have backup, python only, alteratives;
from a performace perspective it is probably smart to have this
installed:

sudo apt-get install python-dev

	python-yaml: Again - this is not really necessary, but will
improve performace:

sudo apt-get install python-yaml

	Python easy_install [http://peak.telecommunity.com/DevCenter/EasyInstall] is the
preferred way to install Moa and a number of further prerequisites.

Installing Moa using easy_install

Easy:

sudo easy_install moa

The commandline will install moa and a number of other python
libraries

There is a number of other prerequisites Moa requires the
following modules to be installed:

	pyyaml [http://pyyaml.org/wiki/PyYAML]

	Jinja2 [http://jinja.pocoo.org/2/]

	Ruffus [http://code.google.com/p/ruffus/]

	gitpython [http://gitorious.org/git-python]

	Yaco [http://mfiers.github.com/Moa/api/Yaco.html]

	fist [http://mfiers.github.com/Moa/api/fist.html]

	`unittest2 http://pypi.python.org/pypi/unittest2`_

	`lockfile http://pypi.python.org/pypi/lockfile`_

These can be installed using
install Moa:

easy_install-2.6 moa

Not part of the list of prerequisites are the following libraries, which
you’ll only need if you are planning to run the web interface:

	ElementTree [http://effbot.org/zone/element-index.htm]

	Markdown [http://freewisdom.org/projects/python-markdown/]

Note - these can be installed using easy_install:

$ sudo easy_install-2.6 ElementTree
$ sudo easy_install-2.6 Markdown

Bioinformatics tools

Each of the wrapped tools requires the tools to be present. Usually,
Moa expects all tools to be present & executable on the system
PATH. The standard Moa distribution comes with wrappers for:

	Blast

	BWA

	Bowtie

	Soap

and many more

Installation from source

Moa is hosted on and can be installed from github [http://github.com/mfiers/Moa]:

cd ~
git clone git://github.com/mfiers/Moa.git moa

Configuration

Configuration of Moa is simple, and can be done by sourcing the
moainit script:

. ~/moa/bin/moainit

(Note the dot!, alternatively use: source ~/moa/bin/moainit)

It is probably a good idea to add this line to your ~/.bashrc for
future sessions.

Moa should now work, try moa –help or, for a more extensive test:
moa unittest

If your default python version is NOT python2.6 or python2.7 there
are a few options that you can pursue:

	change the hashbang of the moa script

	define an alias in your ~/.bashrc: alias moa=’python2.6 moa’

	create a symlink to python2.6 in your ~/bin directory and make sure
that that is first in your path.

Installing the web interface

Note - this is a little experimental - you will need to experiment a
little to get it working. Start with installing apache2.

Then - assuming that:
* Your Moa work directory is under /home/moa/work
* Your Moa is installed in /opt/moa Create a file in
/etc/apache2/conf.d/moa.conf with the following approximate
contents:

Alias /moa/data /home/moa/work
<Directory /home/moa/work>
 Options +Indexes +FollowSymLinks
 Order allow,deny
 Allow from all

 SetEnv MOADATAROOT /home/moa/work
 SetEnv MOAWEBROOT /moa/data

 IndexOptions FoldersFirst SuppressRules HTMLTable IconHeight=24 SuppressHTMLPreamble SuppressColumnSorting SuppressDescription

 HeaderName /moa/cgi/indexHeader.cgi
 ReadmeName /moa/html/indexFooter.html
</Directory>

ScriptAlias /moa/cgi/ /opt/moa/www/cgi/
<Directory /opt/moa/www/cgi/>
 AddType text/html .cgi
 Order allow,deny
 Allow from all
 SetEnv MOABASE /opt/moa
</Directory>

Alias /moa/html/ /opt/moa/www/html/
<Directory /opt/moa/www/html>
 Order allow,deny
 Allow from all
 Options +Indexes
</Directory>

You might want to check the shebang of
/opt/moa/www/cgi/indexHeader.cgi depending on your system
configuration. Restart apache and it should work

 Copyright 2010-2012 Mark Fiers.
 Last updated on Oct 14, 2012.
 Created using Sphinx 1.1.2.

 TEST Brought to you by Read the Docs

 	moa.0.11

 	latest

 	v0.10.15

 Three core templates

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moa 0.10.15 documentation

Three core templates

Moa comes with a list of templates (see templates). The three
most important, flexible templates of these that allow you to embed
custom code (called process) in your project are:

simple:

Simply executes process as a bash one-liner

map:

Takes a set of in- and output files and executes the custom
commands for each in- and output file (using the
Jinja2 [http://jinja.pocoo.org/docs/] template language).

reduce:

Takes a set of input files and a single output file and executes
the custom commands with all input file, generating the output
files.

Since simple, map and reduce have proven to be quite central to
how Moa operates they come with their own shortcut commands (moa
simple, moa map and moa reduce). These command query the user
directly for the parameters instead of having to define this manually.

For example, a simple job:

$ mkdir simple_test && cd simple_test
$ moa simple -t 'Generate some files'
process:
> for x in `seq 1 5`; do touch test.$x; done
$ moa run
$ ls
test.1 test.2 test.3 test.4 test.5

Note that you can make your process as complicated as you
like. Alternatively, you can write a script that you call from
process.

A map job would work like this:

$ mkdir ../map_test && cd ../map_test
$ moa map -t 'Map some files'
process:
> echo {{ input }} ; echo {{ input }} > {{ output }}
input:
> ../simple_test/test.*
output:
> ./out.*
$ moa run
../simple_test/test.3
../simple_test/test.1
../simple_test/test.5
../simple_test/test.2
../simple_test/test.
Moa: Success executing "run" (<1 sec)
$ ls
out.1 out.2 out.3 out.4 out.5
$ cat out.1
../simple_test/test.1

Moa tracks which input file generates which outputfile. So, if you
would like to repeat one of the jobs - you’ll need to delete the
output file & rerun moa:

$ rm out.3
$ moa run
../simple_test/test.3
Moa: Success executing "run" (<1 sec)

And a reduce example:

$ mkdir ../reduce_test && cd ../reduce_test
$ moa reduce -t 'Reduce some files'
process:
> echo {{ " ".join(input) }} >> {{ output }}
input:
> ../map_test/out.*
output:
> ./reduce_out
$ moa run
Moa: Success executing "run" (<1 sec)
$ ls
reduce_out
$ cat reduce_out
../map_test/out.1 ../map_test/out.3 ../map_test/out.4 ../map_test/out.5 ../map_test/out.2

 Copyright 2010-2012 Mark Fiers.
 Last updated on Oct 14, 2012.
 Created using Sphinx 1.1.2.

 TEST Brought to you by Read the Docs

 	moa.0.11

 	latest

 	v0.10.15

 How to write a template

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moa 0.10.15 documentation

 NOTE: both the software and the manual are under development. Expect things to change.

How to write a template

A MOA template is made up of a .moa file and a .jinja2 (or .mk) file.

The .moa file mainly contains input-output file sets and parameter options used for
the bash command(s). Some of these options have default values which the user can change while
constructing the job.

The .jinja2 file includes information to structure the command(s). It is written in jinja [http://jinja.pocoo.org],
which is a templating language for python and is simple to write and easy to understand.

These files are used by the backend, currently ruffus, that manages file set and parameter dependencies
to make pipelines and render commands to the bash prompt. Initially, GNU make was the backend used. It is
very powerful but some of its limitations and its complexity led to including ruffus as an option for
the backend as well.

The easiest way to write a moa template is to edit an existing template
to suit your requirements. This involves understanding the parts of an
existing template.

The bwa_aln template is used as an example below. Just as a background,
the bwa aln command takes a FASTQ file as input and aligns it to a reference genome that
was previously indexed. The output is a .sai file with the alignments.

The bwa_aln.moa file has some main components:

	Backend

backend: ruff

This is ‘ruff’ which means that ruffus [http://www.ruffus.org.uk/]
is used in the python script at a lower level to read the template .moa and .jinja2 file,
and render the corresponding commands to the bash prompt.

	Commands

commands:
 run:
 mode: map
 help: run bwa aln
 clean:
 mode: simple
 help: Remove all job data, not the Moa job itself, note that this must be implemented by the template.

This indicates the function names that you will later define. In the example above,
there are 2 commands- run and clean, so moa run or moa clean on the
command prompt in the job directory would execute these functions.

	Filesets

filesets:
 input:
 category: input
 extension: fq
 help: Fastq input files
 glob: '*'
 optional: false
 type: set
 output:
 category: output
 dir: .
 extension: sai
 glob: '{{ input_glob }}'
 source: input
 type: map

Like the name, each filesets refer to a set of files in a single directory.
The bwa_aln template shows 2 filesets: input and output.

	Category: is essentially used to separate input from output.

	Extension: refers to the type of file(s) required or generated.

	Glob: searches for files with a specified pattern.
Moa, by default (glob= *) automatically processes all files of the specified input
extension in the directory specified. By specifying a glob, Moa will only process
those files whose name pattern matches what is in the glob.

	Type: refers to the data type of the fileset or parameter.

A fileset can either be of set or map type.
The type set refers to a simple set of files in a directory.
The type map refers to a set of files that are linked to what their source
value is. In the above code, the output fileset is mapped to the input fileset.

	Dir: the directory of the output fileset is ‘.’, which means that the output files will
be placed in the current working directory.

	Parameter category order

parameter_category_order:
 - ''
 - input
 - system
 - advanced

	Parameters

mismatch_penalty:
 category: ''
 default: 3
 help: mismatch penalty
 optional: true
 type: integer

They are the variables/options that specify a command.

	Category:

	Default: is the value that is used by default if not changed by the user.

	Optional: specifies if it is necessary for the user to fill in a value for the variable.
If optional is false, the user has to indicate a value for the parameter in order to execute
the job.

	Type: specifies the data type of the variable eg. integer, string, boolean.

	Moa_id

moa_id: bwa_aln

is supposed to be the same as the filename. Ideally something descriptive (eg. bwa_aln).
This is used to later link to the other template file.

The other template file is ‘’bwa_aln.jinja2’’ which is written in jinja [http://jinja.pocoo.org],
a templating language for python.
Note that the jinja2 file name is the same as the moa file name.

Important features of the bwa_aln.jinja2 file are:

	The three hash’s (###) specify the start of a function and are followed by the function name.
In our bwa_aln example, we have defined 2 funtions: run and clean.

run

	This defination is followed by a set of commands which you would want to be executed when you type
moa run or moa_clean in the bwa_aln job directory.
The commands in our example file look the same as what you would put in the command prompt but the
values of the parameters are bought from the .moa file and hence it’s value is replaced by the
parameter name.

bwa aln {{db}} \
 -n {{edit_dist_missing_prob}} \
 . \
 . \
 . \
 {{ input }} \
 -f {{ output}}

	It is also possible to add if-else statements or other computing blocks in accordance with the design
language.

{% if color_space %} -c {% endif %}

 Copyright 2010-2012 Mark Fiers.
 Last updated on Oct 14, 2012.
 Created using Sphinx 1.1.2.

 TEST Brought to you by Read the Docs

 	moa.0.11

 	latest

 	v0.10.15

 Command reference

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moa 0.10.15 documentation

Command reference

moa !

Assign the last issued command to “process” parameter

Usage:

moa !

Description:

Set the process parameter to the last issued command. If a moa
job exists in the current directory, then the process parameter
is set without questions. (even if the Moa job in question does
not use the process parameter). If no moa job exists, a
simple job is created first.

Note: This works only when using bash and if moainit is
sourced properly. moainit defines a bash function _moa_prompt
that is called every time a command is issued (using
$PROMPT_COMMAND). The _moa_prompt function takes the last
command from the bash history and stores it in
~/.config/moa/last.command. Additionally, the _moa_prompt
function stores all commands issued in a Moa directory in
.moa/local_bash_history.

moa archive

Archive a job,

Description:

Archive a job, or tree with jobs for later execution.

This command stores only those files that are necessary for
execution of this job, that is: templates & configuration. In &
output files, and any other file are ignored. An exception to this
are all files that start with ‘moa.’

Usage:

moa archive

or:

moa archive [NAME]

an archive name can be omitted when the command is issued in a
directory with a moa job, in which case the name is derived from
the jobid parameter

It is possible to run this command recursively with the -r
parameter - in which case all (moa job containing) subdirectories
are included in the archive.

As an alternative application you can specify the
–template.

moa blog

Maintain a blog (blog.md)

Usage:

moa blog

Description:

Allows a user to maintain a blog for this job (in Blog.md).

Use it as follows:

$ moa blog
Enter your blog message (ctrl-d on an empty line to finish)

... enter your message here ..

[ctrl-d]

Note: the ctrl-d needs to be given on an empty line. The text is
appended to moa.desciption. In the web interface this is converted
to Markdown [http://daringfireball.net/projects/markdown/markdown.].

moa change

Maintain a changelog file (changelog.md)

Usage:

moa blog

Description:

Allows a user to enter a short note that is appended to
Changelog.md (including a timestamp). Use it as follows:

$ moa change
Enter your changelog message (ctrl-d on an empty line to finish)

... enter your message here ..

[ctrl-d]

Note: the ctrl-d needs to be given on an empty line. The text is
appended to moa.desciption. In the web interface this is converted
to Markdown [http://daringfireball.net/projects/markdown/markdown.].

moa cp

Copy a moa job

Description:

Copy a moa job, or a tree with jobs.

moa cp copies only those files defining a job: the template files
and the job configuration. Additionaly, all files in the moa
directory that start with moa. (for example moa.description
are copied as well. Data and log files are not copied!

The command has two modes of operation. The first is:

moa cp 10.from 20.to

copies the moa job in 10.from to a newly created 20.to
directory. If the 20.to directory already exists, a new
directory is created in 20.to/10.from. As an shortcut one can
use:

moa cp 10.from 20

in which case the job will be copied to the 20.from directory.

If the source (10.from) directory is not a Moa job, the command
exits with an error.

The second mode of operation is recursive copying:

moa cp -r 10.from 20.to

in which case all subdirectories under 10.from are traversed and
copied - if a directory contains a Moa job.

::TODO.. Warn for changing file & dir links

moa err

Returns stderr of the last moa run

moa files

Show an overview of the files for this job

Description:

moa files - Display discovered & inferred files for this job

Usage:

moa files

Display a list of all files discovered (for input & prerequisite
type filesets) and inferred from these for map type filesets.

moa gitadd

Add the current job to the git repository

Description:

Add a job to the git repository

moa gitlog

display a nicely formatted git log

Description:

Print a log to screen

moa gittag

Tag the current version

moa help

Display help for a template

moa kill

Kill a job

Description:

See if a job is running, if so - kill it

moa list

Print a list of all known templates

Description:

moa list - Print a list of all known templates

Usage:

moa list
moa list -l

Print a list of all templates known to this moa installation. If
the option ‘-l’ is used, a short description for each tempalte is
printed as well.

moa lock

Lock this job - prevent execution

moa log

Show the logs for this job

Description:

moa lcog - show a log of the most recent moa calls

Usage:

moa log [LINES]

Shows a log of moa commands executed. Only commands with an impact
on the pipeline are logged, such as moa run & moa set. The
number of log entries to display can be controlled with the
optional LINES parameter.

moa map

Create a “map” adhoc analysis

Usage:

moa map -t "title" -- echo "do something"

Description:

Anything after – will be stored in the process variable. If
– is omitted, Moa will query the user.

Moa will also query the user for input & output files. An example
session:

$ moa map -t 'test map'
process:
> echo 'processing {{ input }} {{ output }}'
input:
> ../10.input/*.txt
output:
> ./*.out

Assuming you have a number of *.txt files in the ../10/input/
directory, you will see, upon running:

processing ../10.input/test.01.txt ./test.01.out
processing ../10.input/test.02.txt ./test.02.out
processing ../10.input/test.03.txt ./test.03.out
...

If the output file exists, and is newer than the input file, the
process will not be executed for that specific pair. If you need
the job to be repeated, you should either delete the output files
or touch the input files.

moa mv

Rename/renumber/move a job

Description:

Renumber or rename a moa job..

moa new

Create a new Moa job

Description:

moa new

Usage:

moa new TEMPLATE_NAME -t 'a descriptive title'

moa out

Returns stdout of the last moa run

moa pause

Pause a job

Description:

pause a running job

moa postcommand

Run the postcommand

Usage:

moa postcommand

Description:

Execute the postcommand

moa precommand

Run the precommand

Usage:

moa pprecommand

Description:

Execute the precommand

moa readme

Edit the Readme.md file for this job

Usage:

moa readme

Description:

Edit the Readme.md file - you could, obviously, also edit the file yourself.

moa reduce

Create a “reduce” adhoc analysis

Usage:

moa reduce -t "title" -- echo "do something"

Description:

Create a ‘reduce’ adhoc job.

There are a number of ways this command can be used:

$ moa reduce -t 'a title' -- echo 'define a command'

Anything after – will be the executable command. If omitted,
Moa will query the user for a command.

Moa will also query the user for input & output files. An example
session:

$ moa map -t 'something intelligent'
process:
> echo 'processing {{ input }} {{ output }}'
input:
> ../10.input/*.txt
output:
> ./*.out

Assuming you have a number of text files in the ../10/input/
directory, you will see, upon running:

processing ../10.input/test.01.txt ./test.01.out
processing ../10.input/test.02.txt ./test.02.out
processing ../10.input/test.03.txt ./test.03.out
...

moa refresh

Reload the template

Description:

Refresh the template - i.e. reload the template from the central
repository.

moa report

generate a report for this job

moa resume

Resume a job

Description:

pause a running job

moa set

Set, change or remove variables

Usage:

moa set [KEY] [KEY=VALUE]

Description:

This command can be used in a number of ways:

moa set PARAMETER_NAME=PARAMETER_VALUE
moa set PARAMETER_NAME='PARAMETER VALUE WITH SPACES'
moa set PARAMETER_NAME

In the first two forms, moa sets the parameter PARAMETER_NAME to
the PARAMETER_VALUE. In the latter form, Moa will present the
user with a prompt to enter a value. Note that the first two forms
the full command lines will be processed by bash, which can either
create complications or prove very useful. Take care to escape
variables that you do not want to be expandend and use single quotes
where you can.

moa show

Show configuration

Usage:

moa show

Description:

Show all parameters know to this job. Parameters in bold are
specifically configured for this job (as opposed to those
parameters that are set to their default value). Parameters in red
are not configured, but need to be for the template to
operate. Parameters in blue are not configured either, but are
optional.

moa simple

Create a “simple” adhoc analysis

Usage:

moa simple -t "title" -- echo "do something"

Description:

Create a ‘simple’ adhoc job. Simple meaning that no in or output
files are tracked.

There are a number of ways this command can be used:

moa simple -t 'a title' -- echo 'define a command'

Anything after – will be the executable command. Note that bash
will attempt to process the command line. A safer method is:

moa simple -t 'a title'

Moa will query you for a command to execute (the parameter
process).

moa status

Show the state of the current job

Description:

moa status - print out a status status message

Usage:

moa status

moa test

Test the currennt configuration

moa tree

display a directory tree

moa unittest

Run Moa unittests

moa unlock

Unlock this job

moa unset

Remove a variable

Usage:

moa unset KEY

Description:

Remove a configured parameter from this job. In the parameter was
defined by the job template, it reverts back to the default
value. If it was an ad-hoc parameter, it is lost from the
configuration.

moa version

Print the moa version

Description:

moa version - Print the moa version number

msp

moa set process

Usage:

msp

this is an alias for the often used:

moa set process

 Copyright 2010-2012 Mark Fiers.
 Last updated on Oct 14, 2012.
 Created using Sphinx 1.1.2.

 TEST Brought to you by Read the Docs

 	moa.0.11

 	latest

 	v0.10.15

 Templates

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moa 0.10.15 documentation

Templates

Contents:

	abyss_pe

	abyss_se

	adhoc

	bamextract

	bartab

	bdbb

	bfast_aln

	bfast_db

	blast

	blastdb

	blat

	bowtie

	bowtie_pe

	bowtie_se

	bowtiedb

	bwa_aln

	bwa_index

	bwa_sampe

	bwa_samse

	cdsmatrix

	cleanFasta

	clustalgroup

	clustalpair

	clustalw

	concatenate

	dottup

	empty

	fasta2gff

	fastainfo

	fastqc

	fastx_clipper

	fastx_qual_stats

	gather

	genemarks

	getorf

	glimmer3

	gmap

	gmapdb

	gsMapper

	h_blast

	hagfish

	kanga

	kangar_pe

	kangar_se

	kangax

	lftp

	map

	map2

	map22

	maq_fasta2bfa

	maq_fastq2bfq

	maq_match_pair

	maq_pe

	maq_se

	moatest

	mummer

	ncbi

	newbler

	newjobtest

	nstretch

	orthomcl

	pregap

	project

	reduce

	sam2bam

	samtools_pileup

	sffinfo

	simple

	soapdenovo_pe

	statsidx

	sync

	unittest

	varscan

	vpcr

	vpcr_list

	wget

 Copyright 2010-2012 Mark Fiers.
 Last updated on Oct 14, 2012.
 Created using Sphinx 1.1.2.

 TEST Brought to you by Read the Docs

 	moa.0.11

 	latest

 	v0.10.15

 abyss_pe

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moa 0.10.15 documentation

 	Templates

abyss_pe

Run Abysspe

Commands

	clean

	Remove all job data

	run

	Execute abysspe in paired-end mode

Filesets

	fq_forward

	fastq input files directory - forward

	fq_reverse

	fastq input files directory - reverse

type: map

source: fq_forward

category: input

optional: True

pattern: */*_2.fq

	output

	soap denovo output file

type: single

category: output

optional: True

pattern: {}

Parameters

	joinpairs

	number of pairs needed to consider joining two contigs

type: integer

default: 10

optional: True

	kmer

	kmer size

type: integer

default: 31

optional: True

	threads

	no threads to use

type: integer

default: 3

optional: True

miscellaneous

	Backend

	ruff

	Author

	Mark Fiers

	Creation date

	Mon, 21 Nov 2011 12:47:16

	Modification date

	Mon, 21 Nov 2011 12:47:22

 Copyright 2010-2012 Mark Fiers.
 Last updated on Oct 14, 2012.
 Created using Sphinx 1.1.2.

 TEST Brought to you by Read the Docs

 	moa.0.11

 	latest

 	v0.10.15

 abyss_se

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moa 0.10.15 documentation

 	Templates

abyss_se

Run Abysspe

Commands

	clean

	Remove all job data

	run

	Execute abyss se

Filesets

	input

	fastq input files directory

	output

	soap denovo output file

type: single

category: output

optional: True

pattern: {}

Parameters

	kmer

	kmer size

type: integer

default: 31

optional: True

	threads

	no threads to use

type: integer

default: 3

optional: True

miscellaneous

	Backend

	ruff

	Author

	Mark Fiers

	Creation date

	Mon, 21 Nov 2011 12:47:16

	Modification date

	Mon, 21 Nov 2011 12:47:22

 Copyright 2010-2012 Mark Fiers.
 Last updated on Oct 14, 2012.
 Created using Sphinx 1.1.2.

 TEST Brought to you by Read the Docs

 	moa.0.11

 	latest

 	v0.10.15

 adhoc

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moa 0.10.15 documentation

 	Templates

adhoc

Execute an ad hoc analysis

The adhoc template assists in running one-liners - possibly on a set of input files

Commands

	clean

	Remove all job data, not the Moa job itself, note that this must be implemented by the template.

	run

	no help defined

Filesets

	input

	Input files for adhoc

Parameters

	mode

	
operation mode: seq, sequential: process the input files one by one; par, parallel: process the input files in parallel (use with -j); all: process all input files at once (use $^ in adhoc_process) and simple: Ignore input files, just execute adhoc_process once.

type: set

default: simple

optional: True

	name_sed

	A sed expression which can be used to derive the output file name for each input file (excluding the path). The sed expression is executed for each input file name, and the result is available as $t in the $(adhoc_process) statement. Make sure that you use single quotes when specifying this on the command line

type: string

default: s/a/a/

optional: True

	output_dir

	Output subdirectory

type: directory

default: .

optional: True

	process

	Command to execute for each input file. The path to the input file is available as $< and the output file as $t. (it is not mandatory to use both parameters, for example “cat $< > output” would concatenate all files into one big file

type: string

default: echo “needs a sensbile command”

optional: True

	touch

	use touch files to track if input files have changed.

type: set

default: T

optional: True

miscellaneous

	Backend

	gnumake

	Author

	Mark Fiers

	Creation date

	Wed Nov 10 07:56:48 2010

	Modification date

	Wed Nov 10 07:56:48 2010

 Copyright 2010-2012 Mark Fiers.
 Last updated on Oct 14, 2012.
 Created using Sphinx 1.1.2.

 TEST Brought to you by Read the Docs

 	moa.0.11

 	latest

 	v0.10.15

 bamextract

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moa 0.10.15 documentation

 	Templates

bamextract

bamextract

Extract a region from a BAM file

Commands

	clean

	Remove all job data, not the Moa job itself, note that this must be implemented by the template.

	run

	Extract a region from a BAM file

Filesets

	bam

	BAM input

type: single

category: input

optional: False

pattern: {}

	regions

	List with regions to extract (id seqid start stop)

type: single

category: input

optional: True

pattern: {}

Parameters

	flank

	flanking region to extract

type: integer

default: 100

optional: {}

miscellaneous

	Backend

	ruff

	Author

	Mark Fiers

	Creation date

	Wed Nov 10 07:56:48 2010

	Modification date

	Wed Nov 10 07:56:48 2010

 Copyright 2010-2012 Mark Fiers.
 Last updated on Oct 14, 2012.
 Created using Sphinx 1.1.2.

 TEST Brought to you by Read the Docs

 	moa.0.11

 	latest

 	v0.10.15

 bartab

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moa 0.10.15 documentation

 	Templates

bartab

Bartab

BARTAB - a tool to process sff files

Commands

	clean

	Remove all job data, not the Moa job itself, note that this must be implemented by the template.

	run

	

Parameters

	extra_parameters

	extra parameters to feed bartab

type: string

default: ``

optional: True

	forward_primer

	remove forward primer

type: string

default: ``

optional: True

	in

	input file for bartab

type: file

default: ``

optional: False

	map

	A file mapping barcodes to metadata

type: file

default: ``

optional: True

	min_length

	minimun acceptable sequence length

type: integer

default: 50

optional: True

	out

	base output name

type: integer

default: bartab

optional: True

	qin

	Quality scores for the input fasta file

type: file

default: ``

optional: True

	reverse_primer

	remove reverse primer

type: string

default: ``

optional: True

	trim

	Trim barcode

type: set

default: T

optional: True

miscellaneous

	Backend

	gnumake

	Author

	Mark Fiers

	Creation date

	Wed Nov 10 07:56:48 2010

	Modification date

	Wed Nov 10 07:56:48 2010

 Copyright 2010-2012 Mark Fiers.
 Last updated on Oct 14, 2012.
 Created using Sphinx 1.1.2.

 TEST Brought to you by Read the Docs

 	moa.0.11

 	latest

 	v0.10.15

 bdbb

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moa 0.10.15 documentation

 	Templates

bdbb

Bidirectional best BLAST hit

Discover the bidirectional best blast hit between two sets of sequences

Commands

	clean

	Remove all job data, not the Moa job itself, note that this must be implemented by the template.

	run

	generate a list of bidirectional best blast hits between two databases of sequences

Filesets

	input_a

	First multi fasta input set

type: single

category: input

optional: False

pattern: */*.fasta

	input_b

	Second multi fasta input set

type: single

category: input

optional: False

pattern: */*.fasta

	output

	List of bidirectional best blasts hits

type: map

source: input_a

category: output

optional: True

pattern: */*.list

Parameters

	eval

	e value cutoff

type: float

default: 1e-10

optional: True

	extract

	Extract the identified sequences from the input fasta files

type: boolean

default: False

optional: True

	nothreads

	Threads to run blast with with

type: integer

default: 4

optional: True

	protein

	Is this a protein set

type: boolean

default: False

optional: True

	tblastx

	If this is a nucleotide set, use tblastx?? (otherwise use blastn)

type: boolean

default: F

optional: True

miscellaneous

	Backend

	ruff

	Author

	Mark Fiers

	Creation date

	Wed Nov 10 07:56:48 2010

	Modification date

	unknown

 Copyright 2010-2012 Mark Fiers.
 Last updated on Oct 14, 2012.
 Created using Sphinx 1.1.2.

 TEST Brought to you by Read the Docs

 	moa.0.11

 	latest

 	v0.10.15

 bfast_aln

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moa 0.10.15 documentation

 	Templates

bfast_aln

Generate bam format alignments using bfast

Commands

	clean

	Remove all job data, not the Moa job itself

	run

	run bfast match, localalign, postprocess commands

Filesets

	fa_input

	fasta input file

	fq_input

	fastq input files

output_aln

type: map

source: fq_input

category: output

optional: {}

pattern: ./*.aln

output_bam

type: map

source: fq_input

category: output

optional: {}

pattern: ./*.bam

Parameters

	algorithm_colour_space

	true -> colour space, false -> NT space

type: boolean

default: False

optional: True

	avg_mism_qual

	Specifies the average mismatch quality

type: integer

default: 10

optional: True

	extra_params_localalign

	Any extra parameters for the localalign command

type: string

default: ``

optional: True

	extra_params_match

	Any extra parameters for the match command

type: string

default: ``

optional: True

	extra_params_postprocess

	Any extra parameters for the postprocess command

type: string

default: ``

optional: True

	min_mapping_qual

	Specifies to remove low mapping quality alignments

type: integer

default: -2147483648

optional: True

	min_norm_score

	Specifies to remove low (alignment) scoring alignments

type: integer

default: -2147483648

optional: True

	output_format

	0 - BAF, 1 - SAM

type: integer

default: 1

optional: True

	paired_opp_strands

	Specifies that paired reads are on opposite strands

type: boolean

default: False

optional: True

	pairing_std_dev

	Specifies the pairing distance standard deviation to examine when recuing

type: float

default: 2.0

optional: True

	print_params

	print program parameters

type: boolean

default: False

optional: True

	thread_num

	Specifies the number of threads to use

type: integer

default: 1

optional: True

	timing_information

	specifies output timing information

type: boolean

default: True

optional: True

	ungapped_aln

	Do ungapped local alignment

type: boolean

default: False

optional: True

	ungapped_pairing_rescue

	Specifies that ungapped pairing rescue should be performed

type: boolean

default: False

optional: True

	unpaired_reads

	True value specifies that pairing should not be performed

type: boolean

default: False

optional: True

	usage_summary

	Display usage summary (help)

type: boolean

default: False

optional: True

	which_strand

	0 - consider both strands, 1 - forwards strand only, 2 - reverse strand only

type: integer

default: 0

optional: True

miscellaneous

	Backend

	ruff

	Author

	Yogini Idnani, Mark Fiers

	Creation date

	Wed Feb 15 10:06:48 2011

	Modification date

	unknown

 Copyright 2010-2012 Mark Fiers.
 Last updated on Oct 14, 2012.
 Created using Sphinx 1.1.2.

 TEST Brought to you by Read the Docs

 	moa.0.11

 	latest

 	v0.10.15

 bfast_db

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Moa 0.10.15 documentation

 	Templates

bfast_db

Generate db index files for aligning reads with bfast

Commands

	clean

	Remove all job data, not the Moa job itself

	run

	run bfast fasta2brg and index commands

